DHBW Mannheim-Eppelheim · MA-TMT16AM2

Angewandte Elektronik 2 · Klausur 2018/06 · Bayer

Matrikel-Nr.:

Blatt 1 / 7

DHBW Mannheim, Campus Eppelheim

Angewandte Elektronik 2 MA-TMT16AM2, EL2, Bayer

Rev. 1.0.0

Klausur 2018/06

Dozent	Rainer Bayer, Dipl	Ing. FH Elektron	ik	Datum	20.06.2017			
Matrikelnummer	auf jedem Blatt (Aufgaben und Lösungen) in der Kopfzeile eintragen							
Studienjahrgang	MA-TMT16AM	Gruppe	2	Semester				
Hilfsmittel	Taschenrechner			Zeit	75 mir			
Bewertung	Punktzahl 100%		Erreichte	Punktzahl				
	Datum, Signum			Ergebnis				

Aufg.	Thema	Blatt	a)	b)	c)	d)	e)	f)	Σ
1	OP: Frequenzgang, Stabilität	2	3	3	3	3	6	X	18
2	OP: Frequenzgang Verstärker	3–4	5	4	6	X	X	X	15
3	OP: Filterschaltung	5	2	4	4	7	5	2	24
4	OP: Verstärker	6	6	2	/2	4	/2	4	20
5	OP: Schmitt-Trigger	7	4	6		6	X	X	18
Anme	Anmerkungen						95		

DHBW Mannheim-Eppelheim \cdot MA-TMT16M2

Angewandte Elektronik 2 · Klausur 2018/06 · Bayer

Blatt 2 / 7

Matrikel-Nr:

OP: Frequenzgang, Stabilität

/ 18

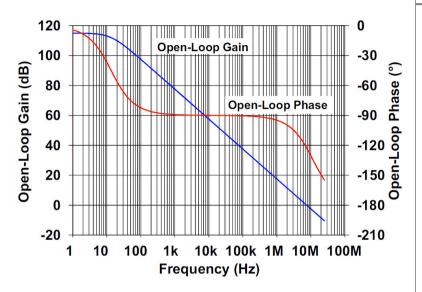


Abb. 1: Frequenzgang OP

Tragen Sie jeweils Hilfslinien zum Auslesen der Zahlenwerte in Abb. 1 ein!

- a) Begründen Sie, warum es sich um einen Dominanzpol-korrigierten OP handelt.
- b) Geben Sie die Leerlaufverstärkung A_{d0} des OPs in dB und als entlogarithmierte Zahl an.
- Geben Sie die erste Grenzfrequenz f_{g0} des OPs an.
- d) Geben Sie das Bandbreite-Verstärkungs-Produkt GBP des OPs an.
- e) Arbeitet der OP als Spannnungsfolger in der Praxis stabil? Begründen Sie Ihre Antwort, indem Sie die Phasenreserve Φ_{M} für diesen Fall ermitteln und bewerten.

/ 3 / 3

/ 6

/ 3

dhbw-me_el2_2018-06_r100.doc

Dipl.-Ing. FH Rainer Bayer

dhbw-me_el2_2018-06_r100.doc

Dipl.-Ing. FH Rainer Bayer

Angewandte Elektronik 2 · Klausur 2018/06 · Bayer

Matrikel-Nr:

Blatt 3 / 7

/ 15

2 OP: Frequenzgang Verstärker

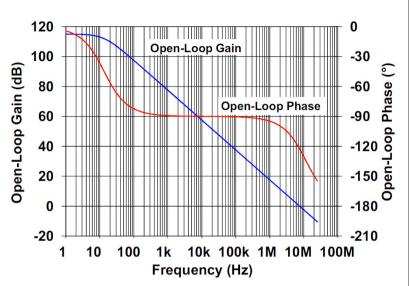


Abb. 2.1: Frequenzgang OP und Verstärker (Näherung; einzuzeichnen)

Tragen Sie jeweils Hilfslinien zum Auslesen der Zahlenwerte in Abb. 2.1 ein!

Mit dem OP aus Aufgabe 1 wird ein Verstärker für harmonische Siganle aufgebaut, der dem Regelkreismodell nach Abb. 2.2 genügt; k ist rein-reell; $U_2 = U_a$.

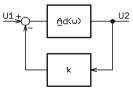


Abb. 2.2: Regelkreismodell

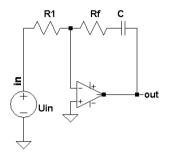
- Zeichnen Sie in Abb. 2.1 den Amplitudengang (N\u00e4herungsfunktion) der Verst\u00e4rkerschaltung f\u00fcr eine 100-fache Verst\u00e4rkung ein.
- b) Ermitteln Sie die Grenzfrequenz f_g^* des Verstärkerschaltung grafisch aus Abb. 2.1.
- Die Signalbandbreite beträgt B̃ = [20; 200]Hz.
 OP: r_i' = 500 kΩ, r_o' = 500 Ω. Ermitteln Sie n\u00e4herungsweise den Worst-Case-Wert der Ausgangsimpedanz Z₂ der Verst\u00e4rkerschaltung innerhalb der Signalbandbreite.

DHBW Mannheim-Eppelheim · MA-TMT16M2

Angewandte Elektronik 2 · Klausur 2018/06 · Bayer

Matrikel-Nr:

Blatt 4 / 7


/ 24

/ 2

/ 4

/ 7

OP: Filterschaltung

R1 = 316 Ω; Rf = 10 kΩ; C = 8 nF

Abb. 3.1: Schaltung, Bauteilewerte

- a) Allgemein
 Handelt es sich um einen Integrierer / Tiefpass oder um einen Differenzier / Hochpass?
 Begründung!
- b) Zeitbereich (DC) / 4
 - Ist der Energiespeicher C unabhängig? Begründung!
 - Ist die OP-Schaltung DC-stabil? Begründung!
- c) Zeitbereich (Sprungantwort)

Skizzieren Sie den *qualitativen* Verlauf der Sprungantwort in Abb. 3.2 für Rf > R1.

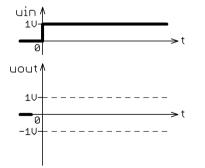


Abb. 3.2: Sprungantwort

d) Frequenzbereich (Sinusantwort)

- Geben Sie die Flankensteilheit in dB / Dekade an.

- Ermitteln Sie $|F_{\infty}|$ und $|F_0|$, jeweils als Zahl und in dB.
- Berechnen Sie die Grenzfrequenz f_g in Hz.

- weiter auf dem nächsten Blatt -

/ 5

/ 4

/ 6

DHBW Mannheim-Eppelheim · MA-TMT16M2

Angewandte Elektronik 2 · Klausur 2018/06 · Bayer

Matrikel-Nr:

Blatt 5 / 7

3 OP: Filterschaltung (fortgesetzt)

e) Bode-Plot / 5 Zeichnen Sie die Näherungsfunktion des Amplitudengangs |F(jω)| unten ein.

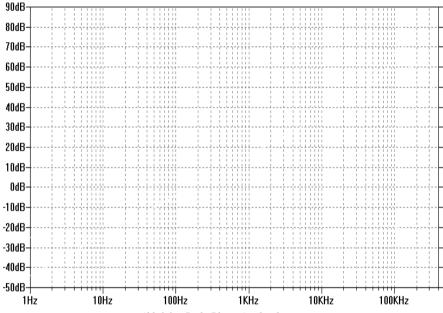


Abb.3.3: Bode-Plot – Amplitudengang

f) Schaltungsmodifikation

/ 2

Machen Sie einen einfachen Änderungsvorschlag, damit die Schaltung erfolgreich simuliert und funktionsfähig im Labor aufgebaut werden kann.

dhbw-me_el2_2018-06_r100.doc Dipl.-lng. FH Rainer Bayer

DHBW Mannheim-Eppelheim · MA-TMT16M2

Matrikel-Nr:

Angewandte Elektronik 2 · Klausur 2018/06 · Bayer

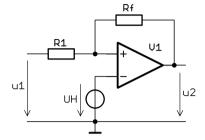
Blatt 6 / 7

4 OP: Verstärker

/ 20

Abb.4: Schaltung Invertierender u/u-Verstärker als Vierpol in Betriebsumgebung mit Ruhestromkompensation

a)	Skizzieren Sie in Abb. 4 die Grundschaltung des Invertierenden u/u -Verstärkers als Vierpol in Betriebsumgebung (reale speisende Spannungsquelle u_0 ; Lastwiderstand RL, DC-Kopplung) inklusive Ruhestromkompensation.	/ 6
b)	Pfeilen Sie u_1 ; u_2 ; i_1 ; i_2 ; i_L ; Z_1 ; Z_2	/ 2
c)	Wie nennt man das Potenzial am -/N-Eingang des OPs, das sich im regulären Betrieb einstellt?	/ 2
d)	$Z_1 = 600 \Omega$; $v_{\text{prog}} = -2$. Ermitteln Sie die Zahlenwerte von R1 und Rf.	/ 4
e)	Ermitteln Sie den Zahlenwert des Widerstands für die Ruhestromkompensation.	/ 2
f)	$u_{1\text{max}} = \pm 1,2 \text{ V. OP: } I_{0\text{max}} = \pm 12 \text{ mA; } U_{0\text{max}} = \pm 3,5 \text{ V. Ermitteln Sie RLmin.}$	/ 4


dhbw-me_el2_2018-06_r100.doc Dipl.-lng. FH Rainer Bayer

Angewandte Elektronik 2 · Klausur 2018/06 · Bayer

Matrikel-Nr:

Blatt **7** / 7

OP: Schmitt-Trigger

 $= 10 \text{ k}\Omega$ $= 50 \text{ k}\Omega$

= -3,33 V $U_{\rm amax} = \pm 10 \text{ V}$

Abb. 5.1: Schaltung; Bauteile- und Spannungswerte

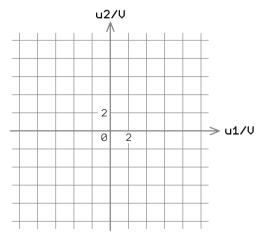


Abb. 5.2: Übertragungsfunktion

Abb. 5.1 zeigt die Schaltung eines Schmitt-Triggers (S.T.) mit Hilfsspannung $U_{\rm H}$.

- a) Warum zählt diese Schaltung zu den sog. "nicht-linearen" OP-Schaltungen?
 - Weisen Sie nach, dass es sich um einen **Nicht**-invertierenden S.T. handelt.
- **b)** Ermitteln Sie die Zahlenwerte der Schaltschwellen $U_{\text{TH+}}$ und $U_{\text{TH-}}$ für die in Abb. 5.1 gegebenen Werte mit Rechenweg. Eine allgemeine (analytische) Lösung ist möglich, aber nicht gefordert.
- c) Berechnen Sie den Zahlenwert der Hysterese.
- **d)** Abb. 5.2: Zeichnen Sie für $u_1 = [-10; +10]$ V die Übertragungskennlinie ein.
 - Abb. 5.2: Kennzeichnen Sie $U_{\rm TH+}$; $U_{\rm TH-}$; $U_{\rm amax+}$; $U_{\rm amax-}$ und $U_{\rm Hys}$.

/ 18

/ 4

/ 6

/ 2

/ 6