DHBW Mannheim-Eppelheim · MA-TMT14AM2 Angewandte Elektronik 2 · 2016-06 · Bayer

Matrikel-Nr.:

Blatt 1 / 7

Blätter inkl. Deckblatt

DHBW Mannheim, Außenstelle Eppelheim

Angewandte Elektronik 2 MA-TMT14AM2, EL2, 2016-06, Bayer

Rev. 1.1.0

Juni 2016

Dozent	Rainer Bayer, Dipl.	-Ing. FH Elektronik			
Name, Vorname				Matrikel- Nummer	auf jedem Bla oben eintrage
Studienjahrgang	MA-TMT14AM	Gruppe	2	Semester	
Hilfsmittel	Taschenrechner			Zeit	75 mi
Bewertung	Punktzahl 100% _		Erreichte	e Punktzahl	
	Datum / Signum			Fraebnis	

Aufg.	Thema	Blatt	a)	b)	c)	d)	e)	gesamt
1	OpAmp: Open Loop, Frequenzgang	2	3	3	3	5	\times	14
2	OpAmp: Verstärker, Frequenzgang	3	4	3	3	4	\times	14
3	OpAmp: Schaltungsanalyse	4	2	1	3	5	7	18
4	OpAmp: Schmitt-Trigger	5	4	3		4	5	18
5	FET: Kleinsignal-Verstärker	6–7		9	4	5	X	20
Anme	rkungen							84

Tragen Sie Hilfslinien zum Auslesen der Zahlenwerte in Abb. 1 ein! Geben Sie die Grenzfrequenz f_{g0} des OpAmps an.

a) Geben Sie die Leerlaufverstärkung A_0 des OpAmps in dB und als Zahl an.

Geben Sie das Bandbreite-Verstärkungs-Produkt GBP des OpAmps an.

Ist der OpAmp Unity-Gain-stable? Begründen Sie Ihre Antwort, indem Sie eine ggf. zahlenmäßige – Aussage über die Phasenreserve ϕ_{M} treffen.

Matrikel-Nr:

OpAmp: Open Loop, Frequenzgang

DHBW Mannheim-Eppelheim · MA-TMT14AM2

Angewandte Elektronik 2 · 2016-06 · Bayer

/ 14

Blatt 2 / 7

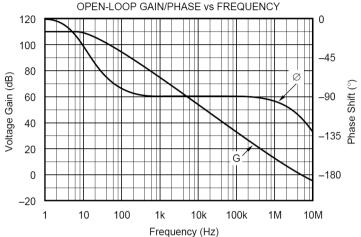


Abb. 1: OpAmp, Amplituden- und Phasengang

/ 3

/ 3

/ 3

/ 5

DHBW Mannheim-Eppelheim · MA-TMT14AM2

Angewandte Elektronik 2 · 2016-06 · Bayer

Matrikel-Nr:

Blatt 3 / 7

/ 14

/ 4

/ 3

/ 3

/ 4

2 OpAmp: Verstärker, Frequenzgang

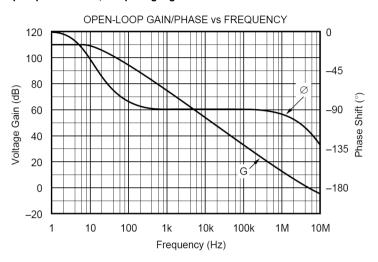


Abb. 2.1: OpAmp, Amplituden- und Phasengang

Tragen Sie Hilfslinien zum Auslesen der Zahlenwerte in Abb. 2.1 ein!

Mit dem gleichen OpAmp wie in Aufg. 1 wird ein Audio-Verstärker aufgebaut, der eine Bandbreite von mindestens $B_{3dB} = [20 \text{ Hz}; 20 \text{ kHz}]$ besitzen soll.

Der Verstärker genügt dem Regelkreismodell nach Abb. 2.2; k ist rein-reell; $u_2 = u_a$.

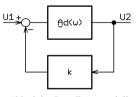


Abb. 2.2: Regelkreismodell des Verstärkers

- a) Zeichnen Sie für $v_{u,prog} = 32$ (Zahl) den Amplitudengang des Verstärkers in Abb. 2.1 ein (Näherungsfunktion).
- b) Ermitteln Sie die Grenzfrequenz f_g^* des Verstärkers **aus Abb. 2.1.** Steht die geforderte Bandbreite zur Verfügung?
- c) Berechnen Sie fg*.
- d) Um welchen Faktor (Zahl) werden Ein- und Ausgangsimpedanz des Verstärkers gegenüber dem unbeschalteten OpAmp für $B_{3dB} = [20 \text{ Hz}; 20 \text{ kHz}]$ mindestens verbessert?

DHBW Mannheim-Eppelheim · MA-TMT14AM2

Matrikel-Nr:

Blatt 4 / 7

/ 7

Angewandte Elektronik 2 · 2016-06 · Bayer

OpAmp: Schaltungsanalyse / 18 **R2** 20k **R3** 30k **R1** 10k u1 包 Abb. 3: Schaltung / 2 a) Handelt es sich um eine so genannte "lineare" oder um eine "nicht-lineare" Schaltung? Begründen Sie Ihre Antwort. b) Welche prinzipielle Grundschaltung liegt vor? / 1 Hinweise Der OP ist ideal. - Lösung aus Ansatz in allgemeiner Form $u_2 = f(\{u_1; R...\})$ ist **nicht** gefordert. Der Ausgangs-Aussteuerbereich des OpAmps beträgt ±9 V. c) $u_1 = +1$ V. Welchen Wert nimmt u_2 an, wenn R4 einen Drahtbruch erleidet (Unter-/ 3 brechung)? d) $u_1 = -1$ V. Welchen Wert nimmt u_2 an, wenn R4 durch einen Lötfehler überbrückt / 5 (kurzgeschlossen) wird? Skizze!

e) $u_1 = -0.5$ V. R4 wie in Abb. 3. Ermitteln Sie den Wert von u_2 . Skizze und Rechen-

dhbw-me_el2_2016-06_r110.doc

Dipl.-Ing. FH Rainer Bayer · www.bayerTEC.de

dhbw-me_el2_2016-06_r110.doc

weg!

/ 20

4 OpAmp: Schmitt-Trigger

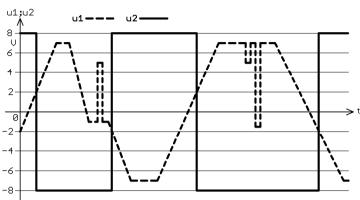


Abb. 4.1: Liniendiagramm

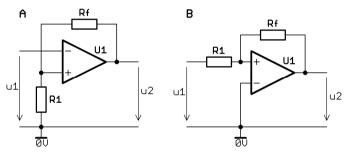


Abb. 4.2: Schaltungen mit OpAmp

Abb. 4.1 zeigt das Liniendiagramm eines Schmitt-Triggers.

- a) Kennzeichnen Sie in Abb. 4.1 die tatsächlichen Schaltpunkte.
 Handelt es sich um einen nicht-invertierenden oder um einen invertierenden Schmitt-Trigger? Begründen Sie Ihre Antwort.
- b) Kennzeichnen Sie in Abb. 4.1 die Schaltschwellen $U_{\rm TH+};~U_{\rm TH-}$ sowie die Hysterese $U_{\rm Hys}$ und geben Sie die Zahlenwerte an.
- c) Kennzeichnen Sie in Abb. 4.1 den Ausgangs-Aussteuerbereich $U_{\rm amax+};~U_{\rm amax-}$ und geben Sie die Zahlenwerte an.
- d) Abb. 4.2: wählen Sie die zugehörige OpAmp-Schaltung A oder B aus und begründen Sie Ihre Wahl unter **schaltungstechnischen** Gesichtspunkten.
- e) Ermitteln Sie den Wert von Rf, wenn R1 = $10 \text{ k}\Omega$ beträgt. Skizze!

/ 18

/ 4

/ 3

/ 2

/ 4

/ 5

Blatt 5 / 7

5 FET: Kleinsignal-Verstärker

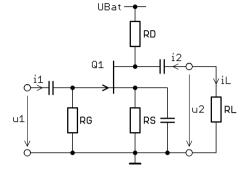


Abb. 5.1 Schaltung

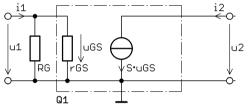


Abb. 5.2 Kleinsignal-Ersatzschaltbild (Fragment)

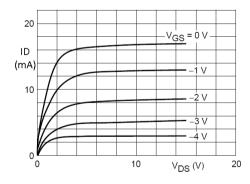


Abb. 5.3 Ausgangskennlinienfeld

Symbol	Parameter	min	typ	max	Unit
IGSS	gate cut-off current	./.	./.	-10	nA
yfS	forward transfer admittance	3	6	6.5	mS
yOS	output admittance	./.	25	./.	μS

Tab. 5.1: Datenblattauszug

DH	BW Mannheim-Eppelheim · MA-TMT14AM2	Matrikel-Nr:		
Angewandte Elektronik 2 · 2016-06 · Bayer		Blatt 7 / 7		
5	FET: Kleinsignal-Verstärker (fortgesetzt)			
a)	Geben Sie die vollständige Bezeichnung des verwendeten FETs an.	/	2	
b)	Berechnen Sie RG; RD und RS für den Arbeitspunkt: $U_{\text{Bat}} = 15 \text{ V}; \ U_{\text{RG,AP}} = 10 \text{ mV}; \ U_{\text{DS,AP}} = 6 \text{ V}; \ I_{\text{D,AP}} = 8 \text{ mA}.$	/	9	
c)	Vervollständigen Sie das Kleinsignal-Ersatzschaltbild in Abb. 5.2 und pfeilen Sie den Drainstrom $i_{\rm D}$ von Q1.	/	4	
d)	Ermitteln Sie die Betriebsverstärkung für RL = 47 k Ω nach Betrag und Phase.	/	5	